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Abstract

Candidate gene approaches provide tools for exploring and localizing causative genes affecting quantitative
traits and the underlying variation may be better understood by determining the relative magnitudes of
effects of their polymorphisms. Diacyglycerol O-acyltransferase 1 (DGAT1), fatty acid binding protein
(heart) 3 (FABP3), growth hormone 1 (GH1), leptin (LEP) and thyroglobulin (TG) have been previously
identified as genes contributing to genetic control of subcutaneous fat thickness (SFT) in beef cattle. In the
present research, Bayesian model selection was used to evaluate effects of these five candidate genes by
comparing competing non-nested models and treating candidate gene effects as either random or fixed. The
analyses were implemented in SAS to simplify the programming and computation. Phenotypic data were
gathered from a F2 population of Wagyu · Limousin cattle. The five candidate genes had significant but
varied effects on SFT in this population. Bayesian model selection identified the DGAT1 model as the one
with the greatest model probability, whether candidate gene effects were considered random or fixed, and
DGAT1 had the greatest additive effect on SFT. The SAS codes developed in the study are freely available
and can be downloaded at: http://www.ansci.wsu.edu/programs/.

Abbreviations: BIC – Bayesian Information Criterion; DGAT1 – diacyglycerol O-acyltransferase 1; FABP3
– fatty acid binding protein (heart) 3; GH1 – growth hormone 1; LEP – leptin; MLE – maximum likelihood
estimates; QTL – quantitative trait loci; REML – residual maximum likelihood; SFT – subcutaneous fat
thickness; TG – thyroglobulin.

Introduction

Candidate gene approaches facilitate discovering
and localizing causative genes for quantitative
traits (Campbell, Nonneman & Rohrer, 2003). A
candidate gene can be identified as the one with
biological actions involved in the development or
physiology of the trait of interest (functional

wMention of a proprietary product does not constitute a

guarantee or warranty of the product by USDA, Montana

AES, or the authors and does not imply its approval to the

exclusion of other products that may also be suitable.

Genetica (2005) 125:103–113 � Springer 2005
DOI 10.1007/s10709-005-5255-1



candidate gene) or chosen from the neighborhood
of previous identified QTLs (positional candidate
gene). Polymorphisms within selected candidate
genes can be tested for association with variation
in the quantitative trait so as to better understand
their effects. Advantages of the candidate gene
analysis include its relative robustness to genetic
heterogeneity and the ability to detect small QTL
effect sizes (Craddock, Dave & Greening, 2001).

Many candidate genes have been proposed as
affecting subcutaneous fat thickness (SFT) in beef
cattle, such as diacylglycerol O-acyltransferase 1
(DGAT1) gene (Thaller et al., 2003; Grisart et al.,
2004), fatty acid binding protein (heart) 3
(FABP3) gene (Roy et al., 2003), growth hor-
mone 1 (GH1) gene (Taylor et al., 1998), leptin
(LEP) gene (Buchanan et al., 2002) and thyro-
globulin (TG) gene (Barendse, 1999). However,
relative magnitude of effects and thus importance
of each of these genes in controlling phenotypic
variation remains unknown. From the view of
statistical model selection, solving this problem
requires comparing competing models that may
not be nested. Classic tests of hypotheses, how-
ever, have difficulty handling this situation since
they require alternative models to be nested
(Bollen, 1989).

For example, following the idea of classic
hypothesis testing, one would first specify an
initial model that includes a set of candidate
genes. Next, a sequence of tests could be used
based on P-values to decide whether the model
should be simplified or expanded by reducing or
increasing the number of candidate genes. The
P-values thus obtained are limited to comparison
of the two nested models and not necessarily
comparable otherwise. In contrast, Bayesian
model selection offers a general way for evaluat-
ing many competing models, whether they are
nested or non-nested. In view of Bayesian model
selection, two competing models (candidate
genes) can be compared in terms of their poster-
ior probabilities and this reasoning extends nat-
urally to the comparison of more than two
models (Congdon, 2001).

The objectives of the present research were to:
(1) implement Bayesian model selection proce-
dures using SAS� in order to simplify the
programming and enhance portability of the pro-
cedures, and (2) evaluate the effects of five previ-
ously identified candidate genes on SFT.

Materials and methods

Animals and the quantitative trait

Animals used in this study were F2 progeny de-
rived from inter se mating of F1 Wagyu · Lim-
ousin sires and dams. The F1 generation was
produced by Washington State University and
transferred to the USDA-ARS Fort Keogh Live-
stock and Range Research Laboratory at Miles
City, MT in the autumn of 1998. All F2 progeny
were produced at Miles City. Calves were weaned
at an approximate average age of 6 months. After
weaning, the calves were fed a growing ration
containing approximately 12% CP and 1.0 Mcal
NEg/Kg. Approximately 4 months before the first
scheduled harvest, the ration was reformulated to
contain approximately 12% CP and 1.3 Mcal
NEg/Kg.

A serial harvest protocol was implemented
whereby 8–10 head of cattle were harvested weekly
with steers and heifers being harvested in alternate
weeks. Calves born in 2000 (n = 71) were har-
vested beginning 8 October 2001, calves born in
2001 (n = 90) were harvested beginning 23
September 2002, and calves born in 2002
(n = 109) were harvested beginning 11 August
2003. Harvest was at a local commercial abattoir.
Subcutaneous fat thickness was measured at the
12–13th rib interface perpendicular to the outside
surface at a point three-fourths the length of the
longissimus muscle from its chine bone end.
Inaccurate measurement of subcutaneous fat
thickness due to hide removal and unavailability
of DNA for analysis resulted in 246 observations
being available for this study. The phenotypic data
were adjusted for effects of year, gender, and age at
harvest (linear) before assessing the effects of the
candidate genes.

Genotyping of candidate genes

Genomic DNA was isolated from white bloods
cells of each animal. The primer sequences de-
signed for genotyping these candidate genes were:
DGAT1, forward 5¢-TGGGCTCCGTGCTGGC-
CCTGATGGTCTA-3¢ and reverse 5¢-TTGAGC-
TCGTAGCACAGGGTGGGGGCGA-3¢; FAB
P3, forward 5¢-GTGAGTTGAGGAAGGGGC
TGTG-3¢ and reverse 5¢-TAGGTCTCCACCTCT
TGTCCTTCAG-3¢; GH1, forward 5¢-TGGGGT
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GGGGAGGGTTCCGAATAAGGCGG-3¢ and
reverse 5¢-TGAGGAACTGCAGGGGCCCAAG
CCACGA-3¢ and TG, forward 5¢-GGGGAT-
GACTACGAGTATGACTG-3¢ and reverse 5¢-
GTGAAAATCTTGTGGAGGCTGTA-3¢. Four
PCR primers were designed to genotype a C/T
transition in exon 2 of the LEP gene using tetra
primer ARMS-PCR (tetra primer amplification
refractory mutation system based PCR). The two
outer primers were 5¢-GACGATGTGCCACGTG
TGGTTTCTTCTGT-3¢ and 5¢-CGGTTCTACCT
CGTCTCCCAGTCCCTCC-3¢, while the two in-
ner primers were: 5¢-TGTCTTACGTGGAGGC
TGTGCCCAGCT-3¢ for the T allele and 5¢-AG-
GGTTTTGGTGTCATCCTGGACCTTTCG-3¢
for the C allele. The amplification reaction was
carried out in a final volume of 10 ll, which con-
tained 5 pmol of each primer, �50 ng genomic
DNA, 200 nM dNTPs, 2.5 mM MgCl2, 50 mM
KCl, 10 mM Tris–HCl, 0.1% Triton X-100 and
0.5 U of AmpliTaq Gold polymerase (Applied
Biosystems, Foster City, CA). After pre-denatur-
ation at 95 �C for 10 min, 30 amplification cycles
were performed: denaturation at 94 �C for 30 s,
annealing at 63 �C for 30 s and extension at 72 �C
for 30 s. The reaction ended with a 5-min post-
extension at 72 �C. The polymorphisms in the TG,
DGAT1, GH1, and FABP3 genes were identified
after digestions with restriction enzymes BstYI,
CrfI, MspI, and AciI, respectively. PCR products
or PCR-digested products were analyzed using
1.6% agarose gels, stained with ethidium bromide
and photographed.

Statistical analysis

Statistical model
Consider a total of n progeny in f unrelated pop-
ulations. Let yj be a phenotypic value of individual
j, which is affected by a QTL. Assuming that a
candidate gene being evaluated is completely
linked with the QTL (i.e. the candidate locus is the
QTL), the phenotypes can be modeled as below

yj ¼ lþ v1j aþ v2j dþ uj þ ej ð1Þ

where l denotes the fixed population mean, a and
d are additive effect and dominance effect,
respectively, of the QTL, vij and v2j are dummy
variables that relate to yj to a and d, respectively,
uj is the residual additive genetic effect that is not
explained by the QTL being evaluated, and �j is a

vector of residual errors. In matrix notation, the
above equation becomes

y ¼ 1lþ Xbþ Zuþ e ð2Þ
where b is a vector that includes the additive (a)
and dominance (d) effects of the candidate gene,
and X and Z are incidence matrices that relate
phenotypes of individual animals in y to model
effects in b and u, respectively. Further, if we
express yj as derivation from the overall mean,
equation is simplified as

y ¼ Xbþ Zuþ e ð3Þ

This is a mixed model if we treat candidate gene
effects as fixed variables. Assuming that u and e are
independent, the covariance matrix of y is

V ¼ VarðyÞ ¼ ZAZ0r2
u þ Ir2

e ð4Þ
where A is the numerator relationship matrix.
Alternatively, if candidate gene effects are treated
as random variables, equation (3) is then a random
model where, under the assumption of indepen-
dence of a, d, and u, the covariance matrix of y is

V ¼ VarðyÞ

¼
X0aXa 0

0 X
0

dXd

� �
r2
a

r2
d

" #
þ ZAZ0r2

u þ Ir2
e

ð5Þ

Bayesian model selection
Competing models are compared based on the
Bayesian Information Criterion (BIC), which is a
large sample approximation to twice the logarithm
of the Bayes factor (Schwarz, 1978). Using BIC
facilitates rapid computation of approximated
Bayes factor from the output of some commonly
used statistical software packages. The Bayesian
information criteria that favors candidate gene 1
over candidate gene 2 is given as

BIC12 ¼�2flogPðyjĥ1;M1Þ� logPðyjĥ2;M2Þg
þ ðp1� p2Þ logðnÞ
¼�2flogPðyjĥ1;M1Þ� logPðyjĥ2;M2Þg

ð6Þ
where P ðyjĥ1;M1Þ and P ðyjĥ2;M2Þ are the maxi-
mized likelihood under models M1 and M2,
respectively, ĥ1 represents the MLE (maximum
likelihood estimates) under Model M1 whose
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dimension is p1, ĥ2 represents the MLE of Model 2
parameter whose dimension is p2, and n is the
sample size. Note that the last term, (p1–p2) log(n),
cancels out since the competing models are of the
same dimension (i.e., p1 = p2) in the present
analyses.

More intuitively, two competing models can be
evaluated in terms of their posterior probability

pðMijyÞ ¼
PðyjMiÞ

PðyjM1Þ þ pðyjM2Þ
; i ¼ 1; 2 ð7Þ

This reasoning extends very naturally to the situ-
ation when k > 2 candidate genes were compared
such that

pðMijyÞ¼
PðyjMiÞ

PðyjM1ÞþPðyjM2Þþ �� �þPðyjMkÞ
;

i¼ 1;2; . . . ;k

ð8Þ

REML estimation of candidate gene effects
Consider the mixed model where candidate gene
effects are treated as fixed variables. In the
residual maximum likelihood (REML) analysis,
the following objective function associated with
REML (i.e. residual log likelihood) was con-
structed based on model (3) and maximized over
all unknown parameters (actually, the PROC
MIXED minimizes –2 times the following func-
tion using a ridge-stabilized Newton–Raphson
algorithm).

lR ¼ �
1

2
log Vj j � 1

2
log X0V�1X
�� ��

� 1

2
r0V�1r� n� p

2
logð2pÞ ð9Þ

where r = y–X(X¢V)1X))X¢V)1y and p is the rank
of X. Model effects are estimated following stan-
dard mixed model theory (Henderson, 1984). A
general t-statistic is constructed for inferences
concerning the fixed and random parameters in the
model. REML estimation of random candidate
gene effects (random models) using the MIXED
procedure is a special case of mixed model ap-
proach without fixed effects (or the overall mean
being the only fixed effect).

Bayesian estimation of candidate gene effects
The structure of the mixed model lends itself to a
two-step approach to sampling posteriors

(Wolfinger & Kass, 2000). Again, consider the
mixed model, and the random model is treated as a
special case of mixed model. Let x be the vector of
variance components in the model, the joint
posterior density of (b, u, x) is written as

pðb; u;x yj Þ ¼ pðb; u x; yj Þpðx yÞj ð10Þ

The two distributions on the right-hand side can
be considered separately. Sampling from the two
distributions comprises the two primary steps of
generating posterior samples in our Bayesian
analysis.

Following Bayes theorem, the marginal pos-
terior for unknown variances can be obtained as

pðx yj Þ / pðxÞpðy xj Þ ð11Þ
where p(y|x) is the integrated likelihood function
and p(x) is the prior for x. In the analysis, a flat
prior was assumed for b and Jeffrey’s prior for x.
The conditional posterior for b and u is relatively
easy to obtain following standard Gaussian mixed
model theory, which takes a form of multivariate
normal density (Henderson, 1984). In the Bayesian
analysis, posterior sampling is conducted in the
following two steps for predefined cycles of up-
dates: (1) Sample x* from p(x|y) using the inde-
pendence chain algorithm; and (2) Given x* from
step 1, b and u are sampled from the multivariate
normal distribution p(b, u|x, y).

The independence chain algorithm (Tierney,
1994) used in the first step requires a fixed base
sampling density g(x|y), from which proposals are
drawn. The base density g(x|y) is defined through
using products of inverted-gamma density. The
chain starts with a pseudo-random draw from
g(x|y). Then, supposing that the chain is currently
at state xt, the algorithm generates a candidate x*

from g(x|y) and accepts it with the following
probability

min
qðxt x�j Þpðx�Þ
qðx� xtj ÞpðxtÞ

; 1

� �
ð12Þ

Otherwise, a copy of xt is added to the chain.

Implementing Bayesian analysis in the SAS system
Bayesian analysis was implemented using PROC
MIXED (SAS Institute Inc., Cary, NC). PROC
MIXED used an independence chain algorithm to
generate the posterior samples for the variance
components. The IC algorithm works by generat-
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ing a pseudo-random proposal from a convenient
base distribution, chosen to be as close as possible
to the posterior. The proposal is then retained in
the sample with probability proportional to the
ratio of weights constructed by taking the ratio of
the true posterior to the base density. Posterior
samples were also generated for fixed effects given
estimated variance components with the solution
option specified in the model statement. For each
parameter in the model, a single chain of 20,000
updates was generated, which were later thinned to
2000 posterior samples. These samples were used
for making inference of marginal distributions of
model parameters.

Given that the additive relationship matrix A
is provided from an input file, the SAS MIXED
procedure performed well with the REML anal-
ysis, but it had difficulty sampling the posteriors
for the residual genetic variance. To overcome
this limitation, for example with fixed candidate
gene effects defined in the model, we sampled
model using the following multivariate normal
density.

p b;u -;yjð Þ/MVN

�
X0X X0Z

Z0X Z0Zþk�1u

� ��
X0y

Z0y

� �
X0X X0Z

Z0X Z0Zþk�1u

� �� �

ð13Þ

where ku ¼ r2
u=r

2
e : This simplification was not

necessary with Bayesian model selection, since
Bayesian information content was not calculated
using posterior data.

Results and discussion

Bayesian evaluation of candidate genes on SFT

Information on mutation, sample size, genotype
frequencies and allele frequencies for DGAT1,
FABP3, GH1, LEP and TG genes was listed in
Table 1. A single candidate gene was included in
the model in a separate analysis. As different
candidate genes were treated as different QTL with
various effects and directly evaluated effects of
these candidate genes on the quantitative trait, the
present single candidate gene analysis was
straightforward. Alternatively, it is possible to
evaluate the five candidate genes simultaneously
with a consequent increase in the number of
parameters to be estimated, computational com-
plexity, and cost. In particular, simultaneous
evaluation of multiple candidate genes may give
rise to the need to consider many interactions in
the fixed-effect model or many covariances in the
random-effect model. Thus, the present approach

Table 1. Loci, mutations, sample size and genotypes and allele frequencies for polymorphisms in five candidate genes

Locus Mutation Sample size Genotype (frequency) Alleles (frequency)

TG C/T 242 CC: 295 + 178 + 75 bp (38.84%) C (60.95%)

CT: 473 + 295 + 178 + 75 bp (44.21%) T (39.05%)

TT: 473 + 75 bp (16.94%)

LEP C/T (exon 2) 246 CC: 239 + 164 bp (44.71%) C (67.89%)

CT: 239 + 164 + 131 bp (46.34%) T (32.11%)

TT: 239 + 131 bp (8.94%)

DGAT1 C/A 246 AA: 405 bp (34.55%) A (58.33%)

AC: 175 + 230 + 405bp (47.56%) C (41.67%)

CC: 175 + 230 bp (17.89%)

GH1 MspI (intron 3) 243 ++: 223 + 109 + 97 + 63 bp (81.07%) +(90.12%)

+): 332 + 223 + 109 + 97 + 63 bp (18.11%) )(9.88%)

) ): 332 + 97 + 63bp (0.82%)

FABP3 A/G 243 AA: 438 bp (6.58%) A (24.69%)

AG: 438 + 299 + 139 bp (36.21%) G (75.31%)

GG: 299 + 139 bp (57.20%)
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might be viewed as individual validations of five
previously identified candidate genes using one test
population. From these validation exercises,
comparisons among the candidate gene effects
have been extracted.

Two methods were used to estimate effects of
these candidate genes: REML and Bayesian esti-
mation. REML estimation (Table 2) identified
DGAT1 as having significant additive effect on
SFT (P < 0.05). A large additive effect of GH1
was also observed but it was not significant due to
a large standard error. None of dominance effect
estimates were found significant (P > 0.05). In
contrast to REML estimation, Bayesian analysis
provided more detailed additive and dominance
effects through their posterior distributions (Fig-
ure 1). For example, the posterior mean of the
additive effect of DGAT1 on SFT was 0.0319, and
the 5, 25, 50, 75, and 95% tiles for its additive
effect were 0.0070, 0.0216, 0.0320, 0.0421, and
0.0572, respectively. Similarly, the posterior means
for its dominance effect was 0.0017. The 5, 25, 50,
75, and 95% tiles for its additive effect were
)0.0160, )0.0560, 0.0016, 0.0088, and 0.0195,
respectively. However, both methods identified
DGAT1 as having the greatest additive effect
(REML: 0.0318 ± 0.0148; Bayesian:
0.0319 ± 0.0150) and GH1 as having the greatest
dominance effect (REML: )0.0307 ± 0.0227;
Bayesian: )0.0219 ± 0.0230) on SFT. The student
t-test indicated that the REML estimate of
DGAT1 additive effect was significantly greater
than zero (P < 0.05). Similarly, Bayesian analysis
showed that 98.29% of posterior samples of
DGAT1 additive effect were positive values (Fig-

ure 1a). Thus, both results indicate that DGAT1
significantly affected SFT in this beef cattle pop-
ulation. Using either the REML or Bayesian
analysis, estimated GH1 dominance effects were
also similar and not significant in view of either the
student t-test (REML: P = 0.4743) or posterior
distribution (Bayesian: 49.95% of the posteriors of
the GH1 dominance effect were positive while
50.05% of them were negative, Figure 1b).

Bayesian estimation of fixed candidate gene
effects was in good agreement with the REML
estimation, but considerable differences were
found in estimated random candidate gene effects
between these two methods (Figure 2). Noticeably,
the REML analysis had difficulty estimating can-
didate gene variance when only two alleles were
involved and it tended to give zero estimates
whenever they should not be. In contrast, Bayesian
estimation dealt with variance estimation in the
bi-allelic systems more naturally, though not a
complete success. Regarding residual variance,
both methods gave similar and consistent estima-
tion (Figure 2).

Bayesian model selection consistently indicated
that an allelic substitution at the DGAT1 locus
had the greatest influence on the thickness of the
subcutaneous fat of animals harvested on an
age-constant basis from this Wagyu–Limousin
population in the five candidate gene loci we
examined, based on either fixed candidate gene
effect models or random candidate gene effect
models (Figure 3). Compared to the null model
without any candidate gene, models that contained
each of the five genes had significantly greater
model probability (i.e. BICs varied from –177.1 to

Table 2. Fixed candidate gene additive and dominance effects and residual variance estimated using restricted maximum likelihood

TG LEP DGAT1 GH1 FABP3

Additive effect

Mean )0.0016 0.0190 0.0318* )0.0232 )0.0155

SE 0.0211 0.0187 0.0148 0.0250 0.0164

Dominance effect

Mean 0.0063 0.0184 0.0019 )0.0307 0.0195

SE 0.0148 0.0121 0.0106 0.0227 0.0130

Residual variance

r2
e 0.0243 0.0243 0.0243 0.0243 0.0243

*P < 0.05.
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–182.9). Thus, all five genes contributed signifi-
cantly to variation to SFT in this beef cattle
population, but with varied importance. When
treating candidate gene effects as fixed variables,
Bayesian model selection identified the DGAT1
model as having the highest model probability
(54.08%), followed by the GH1 model (21.99%).
In contrast, the model probabilities for the other
three candidate genes were relatively low (from
2.56 to 11.47%). Similarly, Bayesian model
selection with random candidate gene effects also
identified the DGAT1 model as having the greatest
model probability (47.9%).

The DGAT1 gene encodes diacylglycerol
O-acyltransferase 1, which is a microsomal
enzyme that plays a central role in the metabo-
lism of cellular diacylglycerol lipids and catalyzes

the only committed step in triacylglycerol syn-
thesis by using diacylglycerol and fatty acyl CoA
as substrates. A lysine/alanine polymorphism of
the DGAT1 gene was previously reported to be
associated with milk fat content (Winter et al.,
2002; Grisart et al., 2004). DGAT1 was suggested
as a functional and positional candidate gene for
milk fat content with evidence coming from: (1)
the phenotype of DGAT1-deficient mice (Smith
et al., 2000) and (2) its position close to a milk fat
QTL on bovine chromosome 14 (Riquet et al.,
1999). It was hypothesized that a lysine residing
at position 232 of the DGAT1 protein could
confer more efficient binding of acyl-coenzyme A
than an alanine residing at that position (Winter
et al., 2002). Thaller et al. (2003) further sug-
gested DGAT1 as a new positional and functional

Figure 1. Posterior distributions of: (a) DGAT1 and (b) GH1 candidate gene effects on age-constant subcutaneous fat thickness in

Wagyu · Limousin beef cattle. Posterior samples were collected at every 10th of the 20,000 updates based on models with fixed

candidate gene effects.
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candidate gene for intramuscular fat deposition in
cattle because: (1) its product is directly involved
in triglyceride synthesis (Cases et al., 1998), (2)
expressed sequence tags analysis has found that it
is expressed in adipose tissue (Fries and Winter,
2002), in addition to the bovine mammary gland,
and (3) radiation hybrid mapping has placed
DGAT1 on chromosome 14 (Womack et al.,
1997), proximal to CSSM66, a microsatellite
marker that was associated with a lipid QTL

(Barendse, 1999). In humans, Smith et al. (2000)
has suggested that the selective inhibition of
DGAT1-mediated triglyceride synthesis may be
useful for treating obesity.

Bayesian analysis in the SAS system

The SAS system has been widely used in analyz-
ing QTL and candidate genes in the past decades,
yet it has not been known to support much

Figure 2. Estimates of additive, dominance, and residual variance components from restricted maximum likelihood and Bayesian

analyses of age-constant subcutaneous fat thickness in Wagyu · Limousin beef cattle.

Figure 3. Model probabilities for TG, LEP, DGAT1, GH1 and FABP3 loci affecting age-constant subcutaneous fat thickness in

Wagyu · Limousin beef cattle.
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Bayesian analysis. Bayesian analyses have been
incorporated into the PROC MIXED procedure
with the availability of the PRIOR statement in

the SAS system of version 7 or later. It currently
operates with variance component models and
can estimate their marginal posterior density.
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PROC MIXED allows for various strategies to
generate posterior samples for variance compo-
nents, which include: independence chain (IC),
importance sampling (IS), rejection sampling
(RS), and random walk chain (RWC). An inde-
pendent chain algorithm was used to generate the
posterior sample in the present analysis. As a
particular MCMC alternative to Gibbs sampling,
the IC algorithm has many features making it
different from the latter, such as sampling vari-
ance components as a block, and using the same
proposal density through the entire algorithm so
that it requires no burn-in updates. Practically,
the IC algorithm is more efficient to handle
unbalanced, nonconjugate cases than the Gibbs
sampling (Wolfinger & Kass, 2000).

Under the Bayesian framework, the type of
model effects, whether fixed or random, depends
on how we treat the prior distributions (Yi & Xu,
2000). In this research, alternative analyses of the
data consistently supported each other. However,
estimation of variance components was not en-
tirely satisfactory in these bi-allelic systems. Xu
(1998) found that treating QTL as random vari-
ables is justifiable with multiple alleles than with
just two alleles. Treating bi-allelic gene effects as
random in the model may be accompanied by
concern about bias in estimated genetic variances.
As shown in a previous research, estimated ge-
netic variances based on random-QTL models
vary dramatically depending on sampling strate-
gies, and sampling more alleles (families) would
greatly improve estimation of genetic variances
(Wu & Jannink, 2004). We also observed a slight
difference in the Markov chain behavior when
treating candidate gene effects as either fixed or
random variables. Chains for random candidate
gene effects were less movable than for fixed
candidate gene effects, possibly due to each can-
didate gene having only two alleles. The bi-allelic
system would cause difficulty for the chain to
move to a new state. Nevertheless, the sampling
acceptance probability for the five random can-
didate gene effects ranged from 0.13 to 0.29,
which was still within the range of the suggested
acceptance probability (Roberts, 1995; Jannink &
Wu, 2003).

The use of Jeffrey’s prior influenced posterior
distributions of both additive and dominance
variances relative to use of flat priors (Figures 3
and 4), when candidate gene effects were treated as

random variables. Posteriors of the two variance
components obtained using Jeffrey’s prior were
more heavily distributed toward smaller values.
This situation is typical in small data sets where
the prior dominates the posterior. In contrast,
estimates of residual variance were insensitive to
method of analysis, fixed versus random candidate
gene effects, and choice of prior.
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